77 research outputs found

    Entanglement entropy for a Maxwell field: Numerical calculation on a two dimensional lattice

    Get PDF
    We study entanglement entropy (EE) for a Maxwell field in 2+1 dimensions. We do numerical calculations in two dimensional lattices. This gives a concrete example of the general results of our recent work on entropy for lattice gauge fields using an algebraic approach. To evaluate the entropies we extend the standard calculation methods for the entropy of Gaussian states in canonical commutation algebras to the more general case of algebras with center and arbitrary numerical commutators. We find that while the entropy depends on the details of the algebra choice, mutual information has a well defined continuum limit. We study several universal terms for the entropy of the Maxwell field and compare with the case of a massless scalar field. We find some interesting new phenomena: An "evanescent" logarithmically divergent term in the entropy with topological coefficient which does not have any correspondence with ultraviolet entanglement in the universal quantities, and a non standard way in which strong subadditivity is realized. Based on the results of our calculations we propose a generalization of strong subadditivity for the entropy on some algebras that are not in tensor product.Comment: 27 pages, 15 figure

    Localization of Negative Energy and the Bekenstein Bound

    Get PDF
    A simple argument shows that negative energy cannot be isolated far away from positive energy in a conformal field theory and strongly constrains its possible dispersal. This is also required by consistency with the Bekenstein bound written in terms of the positivity of relative entropy. We prove a new form of the Bekenstein bound based on the monotonicity of the relative entropy, involving a "free" entropy enclosed in a region which is highly insensitive to space-time entanglement, and show that it further improves the negative energy localization bound.Comment: 5 pages, 1 figur

    Spread of entanglement and causality

    Get PDF
    We investigate causality constraints on the time evolution of entanglement entropy after a global quench in relativistic theories. We first provide a general proof that the so-called tsunami velocity is bounded by the speed of light. We then generalize the free particle streaming model of arXiv:cond-mat/0503393 to general dimensions and to an arbitrary entanglement pattern of the initial state. In more than two spacetime dimensions the spread of entanglement in these models is highly sensitive to the initial entanglement pattern, but we are able to prove an upper bound on the normalized rate of growth of entanglement entropy, and hence the tsunami velocity. The bound is smaller than what one gets for quenches in holographic theories, which highlights the importance of interactions in the spread of entanglement in many-body systems. We propose an interacting model which we believe provides an upper bound on the spread of entanglement for interacting relativistic theories. In two spacetime dimensions with multiple intervals, this model and its variations are able to reproduce intricate results exhibited by holographic theories for a significant part of the parameter space. For higher dimensions, the model bounds the tsunami velocity at the speed of light. Finally, we construct a geometric model for entanglement propagation based on a tensor network construction for global quenches.Comment: v2: minor improvements; v1: 78 pages, 30 figure

    Holographic RG flows, entanglement entropy and the sum rule

    Get PDF
    We calculate the two-point function of the trace of the stress tensor in holographic renormalization group flows between pairs of conformal field theories. We show that the term proportional to the momentum squared in this correlator gives the change of the central charge between fixed points in d=2 and in d>2 it gives the holographic entanglement entropy for a planar region. This can also be seen as a holographic realization of the Adler-Zee formula for the renormalization of Newton's constant. Holographic regularization is found to provide a perfect match of the finite and divergent terms of the sum rule, and it is analogous to the regularization of the entropy in terms of mutual information. Finally, we provide a general proof of reflection positivity in terms of stability of the dual bulk action, and discuss the relation between unitarity constraints, the null energy condition and regularity in the interior of the gravity solution.Comment: v2: 32 pages, 1 figure. Refs. and comments added. Version published in JHE

    The g-theorem and quantum information theory

    Full text link
    We study boundary renormalization group flows between boundary conformal field theories in 1+11+1 dimensions using methods of quantum information theory. We define an entropic gg-function for theories with impurities in terms of the relative entanglement entropy, and we prove that this gg-function decreases along boundary renormalization group flows. This entropic gg-theorem is valid at zero temperature, and is independent from the gg-theorem based on the thermal partition function. We also discuss the mutual information in boundary RG flows, and how it encodes the correlations between the impurity and bulk degrees of freedom. Our results provide a quantum-information understanding of (boundary) RG flow as increase of distinguishability between the UV fixed point and the theory along the RG flow.Comment: 34 pages + appendices, 8 figures. v2. Improved and corrected version of the proo

    Remarks on entanglement entropy for gauge fields

    Get PDF
    In gauge theories the presence of constraints can obstruct expressing the global Hilbert space as a tensor product of the Hilbert spaces corresponding to degrees of freedom localized in complementary regions. In algebraic terms, this is due to the presence of a center --- a set of operators which commute with all others --- in the gauge invariant operator algebra corresponding to finite region. A unique entropy can be assigned to algebras with center, giving place to a local entropy in lattice gauge theories. However, ambiguities arise on the correspondence between algebras and regions. In particular, it is always possible to choose (in many different ways) local algebras with trivial center, and hence a genuine entanglement entropy, for any region. These choices are in correspondence with maximal trees of links on the boundary, which can be interpreted as partial gauge fixings. This interpretation entails a gauge fixing dependence of the entanglement entropy. In the continuum limit however, ambiguities in the entropy are given by terms local on the boundary of the region, in such a way relative entropy and mutual information are finite, universal, and gauge independent quantities.Comment: 26 pages, 7 figure

    Area terms in entanglement entropy

    Get PDF
    We discuss area terms in entanglement entropy and show that a recent formula by Rosenhaus and Smolkin is equivalent to the term involving a correlator of traces of the stress tensor in Adler-Zee formula for the renormalization of the Newton constant. We elaborate on how to fix the ambiguities in these formulas: Improving terms for the stress tensor of free fields, boundary terms in the modular Hamiltonian, and contact terms in the Euclidean correlation functions. We make computations for free fields and show how to apply these calculations to understand some results for interacting theories which have been studied in the literature. We also discuss an application to the F-theorem.Comment: 26 pages, no figures, references adde

    Proof of a Quantum Bousso Bound

    Get PDF
    We prove the generalized Covariant Entropy Bound, ΔS(AA)/4G\Delta S\leq (A-A')/4G\hbar, for light-sheets with initial area AA and final area AA'. The entropy ΔS\Delta S is defined as a difference of von Neumann entropies of an arbitrary state and the vacuum, with both states restricted to the light-sheet under consideration. The proof applies to free fields, in the limit where gravitational backreaction is small. We do not assume the null energy condition. In regions where it is violated, we find that the bound is protected by the defining property of light-sheets: that their null generators are nowhere expanding.Comment: 19 pages, 3 figures; v2: references adde
    corecore